

3rd Mexican Hydrographic Conference

Ciudad del Carmen, Campeche

April 27th-29th 2016

Who We Are

Industry leader in underwater acoustics

- EdgeTech (formerly EG&G Marine)
 - Started in 1966 by Doc Edgerton
 - Over 50 years making sonar systems
- ORE Offshore affiliated with EdgeTech over 10 years adopted the EdgeTech name in 2012
 - Formed in 1963
- Facilities in Massachusetts and Florida

Core Competencies

- Engineering
 - Acoustic
 - Ceramics, transducers, hydrophones, arrays
 - Algorithms
 - Mechanical
 - High level of experience with electronics, housing, array, packaging, cabling
 - Software
 - Firmware and user-level expertise
 - Test
 - Specials, custom solutions
 - New product development emphasis

The 6205 Combined Swath Bathymetry and Side Scan Sonar

EdgeTech's MPES Technology

- Coverage of up to 12 x water depth.
- IHO Special Order compliant
- Over 200° Swath Coverage
- Co-registered Dual Frequency Side Scan Imagery
- Chirp pulses for higher accuracy and extended range
- Multipath and Wake Suppression
- Lightweight and modular package
- Superior Data Quality & Integrity

Co-Registered Bathymetry & Side Scan

- Bathymetry & Simultaneous Dual Frequency Side Scan Sonar
- Precisely Co-Registered Bathymetry & Side Scan Imagery
- Longer Arrays for Higher Resolution Imagery
 - 1 to 3cm Range Resolution

6205 Advantages

Three types of data collected:

- Bathymetry
- Backscatter
- Sidescan (Dual Frequency)

Technical Specifications

SWATH BATHYMETRY & SIDE SCAN SONAR

KEY SPECIFICATIONS

BATHYMETRY					
Sonar Frequency	230 kHz		550 kHz		
Beamwidths*	1° x 0.7°		1° x 0.5°		
Max Sounding Depth**	225 m		120 m		
Max Swath Width***	400 m		200 m		
Max Swath Sector		200°			
Max Number of Soundings		800			
Sounding Patterns	Equidistant and Equiangular				
SIDE SCAN SONAR IMAGERY					
Frequency	230 kHz		550 kHz		1600 kHz
Horizontal Beamwidth (2-way)	0.54°		0.36°		0.20°
Range Resolution	30 mm		10 mm		6 mm
Max Range**	250 m		150 m		35 m
SYSTEM					
5151211					
Pulse Modulation			CW & FM CHIRP		
Pulse Modulation Ping Rate (Range Dependent)			CW & FM CHIRP Up to 60 Hz		
Pulse Modulation Ping Rate (Range Dependent) Construction		FRP Cor	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste	el Reinforceo	l
Pulse Modulation Ping Rate (Range Dependent) Construction Dimensions		FRP Cor	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste 150 x 211 x 762 m	el Reinforceo	1
Pulse Modulation Ping Rate (Range Dependent) Construction Dimensions Deck Cable Length		FRP Cor	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste 150 x 211 x 762 m 20m (Standard)	el Reinforcec m	I
Pulse Modulation Ping Rate (Range Dependent) Construction Dimensions Deck Cable Length Depth Rating		FRP Cor	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste 150 x 211 x 762 m 20m (Standard) 50 m	el Reinforcec m	I
Pulse Modulation Ping Rate (Range Dependent) Construction Dimensions Deck Cable Length Depth Rating Weight (In Air)		FRP Cor	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste 150 x 211 x 762 m 20m (Standard) 50 m 19.9 kg (44 lbs)	el Reinforcec m	I
Pulse Modulation Ping Rate (Range Dependent) Construction Dimensions Deck Cable Length Depth Rating Weight (In Air) Input Voltage		FRP Cor	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste 150 x 211 x 762 m 20m (Standard) 50 m 19.9 kg (44 lbs) 48-60 VDC, 115-230	el Reinforcec m VAC	I
Pulse Modulation Ping Rate (Range Dependent) Construction Dimensions Deck Cable Length Depth Rating Weight (In Air) Input Voltage Power (Typical /Max)		FRP Cor	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste 150 x 211 x 762 m 20m (Standard) 50 m 19.9 kg (44 lbs) 48-60 VDC, 115-230 55W / 70W	el Reinforcec m VAC	
Pulse Modulation Ping Rate (Range Dependent) Construction Dimensions Deck Cable Length Depth Rating Weight (In Air) Input Voltage Power (Typical /Max) Software	Windows based softw	FRP Cor	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste 150 x 211 x 762 m 20m (Standard) 50 m 19.9 kg (44 lbs) 48-60 VDC, 115-230 55W / 70W	el Reinforcec m VAC athymetric A	l cquisition and Sonar Control
Pulse Modulation Ping Rate (Range Dependent) Construction Dimensions Deck Cable Length Depth Rating Weight (In Air) Input Voltage Power (Typical /Max) Software Data Products	Windows based softw Bathymetry	FRP Cor are included I , Backscatter	CW & FM CHIRP Up to 60 Hz nposite / Stainless Ste 150 x 211 x 762 m 20m (Standard) 50 m 19.9 kg (44 lbs) 48-60 VDC, 115-230 55W / 70W EdgeTech's Discover Ba and Side Scan Imager	el Reinforcec m VAC athymetric A y, and Real Ti	l cquisition and Sonar Control me Uncertainties

Acquisition Software

- EdgeTech's Discover Bathymetric
- Compatible 3rd Party Software for Acquisition:
 - QINSy
 - Hypack
 - SonarWiz
 - Fugro Winfrog (Starfix)
 - EIVA
- Coming Soon:
 - Triton
 - PDS2000
 - OIC CleanSweep
- Postprocessing via jsf:
 - QINSy QIMERA
 - Hypack
 - CARIS

Why MPES?

- Many MBES Systems on the Market
 - Not Suitable for Shallow Water
 - Limited Swath Angle (Typical 130° or less)
 - No Side Scan Imagery (Limited to Backscatter)
- Typical Interferometry Systems Too Noisy w/ Nadir Gap
 - Efficiency Gains Lost due to Nadir Gap
 - Noisy Data = Lots of Data Cleaning
- Better Spatial Resolution than Beam Formers, but without the Nadir gap traditionally associated with Interferometers

SURVEYORS NEED SOLUTION FOR SHALLOW WATER SURVEY OPERATIONS!

Survey Work Conducted in 2 days!

7 Hours on Day 18 Hours on Day 2

Survey Area

VERTICE	LATITUD	LONGITUD
A	18° 37' 56.23" N	091° 50' 36.74" W
В	18° 38' 14.43" N	091° 50' 22.37" W
C	18° 38' 15.98" N	091° 50' 11.75" W
D	18° 38' 01.89" N	091° 49' 57.25" W
E	18° 37' 52.84" N	091° 49' 44.50" W
F	18° 37' 50.14" N	091° 49' 26.27" W
G	18° 37' 30.73" N	091° 49' 27.93" W
н	18° 37' 23.49" N	091° 49' 59.97" W

Survey Area

VERTICE	LATITUD	LONGITUD
A	18° 37' 56.23" N	091° 50' 36.74" W
В	18° 38' 14.43" N	091° 50' 22.37" W
C	18° 38' 15.98" N	091° 50' 11.75" W
D	18° 38' 01.89" N	091° 49' 57.25" W
E	18° 37' 52.84" N	091° 49' 44.50" W
F	18° 37' 50.14" N	091° 49' 26.27" W
G	18° 37' 30.73" N	091° 49' 27.93" W
н	18° 37' 23.49" N	091° 49' 59.97" W

Sidescan Coverage Report

Bridge Survey (2 lines)

Bridge Survey (2 lines)

SSL:101644 SSH:101560 Lat: 18:378896 N Lor: 91:501283W Course:0.00 Speed: 0.00 ATD: 0.00 Heading: 235 Pitch: 2.1 Rolt -4.0 Abitude: 14.8 Depth: NA SV: 1543 Cursor: Ping: 100768 Mark: 1 Date: Mar: 27,2016 Time: 23:44:17 Power: 100% Free Space: 161784 MB

Playback Bathymetry: ON Record: OFF NET: OFF Power: OFF

SSL17/050/ SSH17/0884 Lat: 19:38/0/21 N. Lon: 91:50/4153W Course: UUU Speed: UUU AID: UUU Heading 121.8 Pitch: 2.0 Holt: UU Alhtude: Cursor: Ping: 170544 Mark: 1 Date: Mar. 26;2016 Time: 21:27:34 Power: 100% Free Space: 161784 MB

Playback Bathymetry: DN Record: OFF NET: OFF Power: OFF

Motion Compensation (Beam Average)

Description of Survey Process

Description of Survey Process

6205 Frequency Options

• The 6205 is available in three standard frequency options:

230 kHz Bathymetry : to 225m depth below transducers
With 230 & 550 kHz Dual Frequency Side Scan

– 550 kHz Bathymetry :to 120m depth
With 230 & 550 kHz Dual Frequency Side Scan

 – 550 kHz Bathymetry :to 120m depth With 550 & 1600 kHz Dual Frequency Side Scan
Also available: Exchangeable arrays.

6205 components

Inertial Navigation Unit

Radio Modem

GeoSurvey Mexicana Vessel

Sound Velocity Profiler

Teledyne Odom Hydrographic Digibar Pro Profiling Sound Velocimeter

For Seafloor and Riverbed Surveys

The Digibar Pro is the most cost-efficient and accurate means of determining water column sound velocities. It quickly calibrates acoustic systems regardless of sea state or current and is faster and safer than the traditional bar check method.

Digibar Pro uses "sing-around" technology, which automatically compensates for all factors influencing sound velocity, including salinity, depth, and temperature.

PRODUCT FEATURES

- Velocity profiles downloaded to a computer
- Handheld display/logger with computer interface
- Battery operated

- Detachable cable (in lengths up to 100 meters)
- Sampling by depth or time
- Stainless steel probe
- Waterproof

- Lightweight
- Portable
- Optional transit cases
- Optional Cable Reel
- Optional Kellems grip

Sound Velocity Casts Day 1

ound Velocity - 3-26-16 SV Cast 1.vel	Sound Velocity - 3-26-16 SV Cast 3.vel
Convert Help	
Enter Depth in Meters and Velocity in M/Sec	Enter Depth in Meters and Velocity in M/Sec
End Depth Velocity 1.00 1538.40 2.00 1538.30 3.00 1538.10 4.00 1537.70 5.00 1538.10 6.00 1538.10 7.00 1538.90 8.00 1541.10 10.00 1541.10	End Depth Velocity 1 1.00 1539.10 2 2.00 1539.20 3 3.00 1539.25 4 4.00 1539.45 5 5.00 1539.65 6 6.00 1540.90 9 10 10 10 1535 1545
Delete Row Insert Row Swap Columns Sort Graph	Delete Row Insert Row Swap Columns Sort Graph Sound Velocity - 3-26-16 SV Cast 5.vel Image: Sound Velocity - 3-26-16 SV Cast 5.vel Image: Sound Velocity - 3-26-16 SV Cast 5.vel
Delete Row Insert Row Swap Columns Sort Graph Sound Velocity - 3-26-16 SV Cast 4.vel X File Convert Help Enter Depth in Meters and Velocity in M/Sec	Delete Row Insert Row Swap Columns Sort Graph Sound Velocity - 3-26-16 SV Cast 5.vel Image: Sound Velocity - 3-26-16 SV Cast 5.vel Image: Sound Velocity - 3-26-16 SV Cast 5.vel File Convert Help Enter Depth in Meters and Velocity in M/Sec
Delete Row Insert Row Swap Columns Sort Graph Sound Velocity - 3-26-16 SV Cast 4.vel Image: Column State Sta	Delete Row Insert Row Swap Columns Sort Graph Sound Velocity - 3-26-16 SV Cast 5.vel Image: Column of the start of the st

		leolojellech =
EdgeTech	Advanced Bathymetric Controls	Done C Distance Binning C Angle Binning Bin Size (Degrees): 0.25
	Gating Port Limit (M): 75.00 Angle (degrees): 100.00 Reset Starboard Limit (M): 75.00 Angle (degrees): 100.00 Reset	
È EdgeTech	Limit Maximum Swath as a Function of Water Depth (X): 12.0 Image: Maximum Swath Gate Filters Filters Image: Automatic Echo Strength Thresholds Image: Water Column Filter	
= E d g e T e d h =	Automatic Echo Filter Sensitivity: 1.2 Echo Strength Filter (1/10 %): 0 SNR Filter (dB): 12 Quality Filter (%): 75.0	
EdoraTech 🚔		EdoreTech É
Sidescan Control Video Gains Display Disk Bottom Track Grids Image Capture Status Sonar On Range (M): 25 - - - - - - Sonar On Range (M): 75 - - Ping Rate (%): 100 - -	Frequencies Duration Signal Meter 0.0 KHz 0 ms 0 - 0 ▶ 0.0 KHz 0.0 KHz 0 ms 0 - 0	

SSL: 0 SSH: 0 Lat: 0 : 00.0000 N Lon: 0 : 00.0000 E Course: 0.00 Speed: 0.00 ATD: 0.00 Heading: NA Pitch: 0.0 Roll: 0.0 Altitude: NA Depth: NA SV: 1538 Mark: 1 Date: NA Time: NA Power: 0% Free Space: 151782 MB

EdgeTech Discover - Bathymetric				-		-		al and								
File View Configuration Control Bathymetry	Help	■ » 🗸 🛛	n N -	55 + 🖬 -	57 +	= 🖽										
			a katus.							Lake	Mille					
	and a second and a second s	www.www.wyw/4/14	WMMM WWW	La		-	/M		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		AL RUDYHWYWW	Munther	mantherman		~~~~	
Meters 27 25 23	21 19	17 15	13	11 9	7 5	3	HF SR 1	3	5 7 9	11	13 1	5 17	19 21	23	25 27	Meters
			F													
l i i i i i i i i i i i i i i i i i i i	Bathymetric Resu	ults											x			
	View .90 M		LED M	50 M 40 M	1.30 M	20 M 10 M	10 M i	20 M 3	ом: 40м: 50	мі елмі	20 M -	90 M i 90 M i				
	10 м															
													7-			
																Δ.
															[7]	
							and the second sec		- Martin Marth	10			07a	?//AC		
•				Control of Super-Super-	Repairing the second								_			<u>}</u>
4	20 M															
																-
Meters 50 45													4	<u>u (45</u>	50	Meters
	rocessed Pings: 221	29 Detected Alti	tudes: 19982	Angle Sets: 221	28 / 22128						_				Service.	
	Binning	-80 M -70 M	-60 M	50 M 40 M	-30 M	20 M - 10 M	10 M	20 M 31	NM: 40M: 501	M 60 M 1	70 M	80M; 90M;			Sec. 2.	
													a second		-	
														C. Stand		
													22			
	IO M															$ \Delta $
E Fichere	20 M												676	The	15	
													$\nu/=$!//Ә८	-///	
Sidescan Control Video Gains Display Disk Bo																
Playback File: 3_26_16_Carmen_Conference_520B		_														
F:\Geosurvey\March_Survey520B_Surv	rey.032_Stave.jsf 4% Complete															
	Speed: 5															
SSL: 198703 SSH: 198680 Lat: 18: 37.8161 N Lon: 91	: 49.9364 W Cours	: 0.00 Speed: 0.00 AT	D: 0.00 Heading	g: 230.4 Pitch: 1.5 P	Roll: 3.5 Altitude:	11.1 Depth: NA	SV: 1537						D 4	D 105	NET OFF	D 075

PATCH TEST Calibrations

• Day 1

~				Survey Matrix = Median	Color By
<u> </u>					Depth
					5.0
Read	Parameters			5 - 002_1623.HSX	
Sur	vey Corrections Devices	Processing		3 - 003_1559.HSX	12.5
	Select All Files	Select Survey	Files Before Making Changes		
	01_1550.HSX	Navigation	HYPACK X=0.000 Y=0.000 Z=0.430 Latency=0.000		20.0
	02_1553.HSX 03_1559.HSX	MRU	Edgetech X=0.000 Y=0.000 Z=0.430 Pitch=0.00 Roll=0.00		
	01_1605.HSX 02_1611.HSX	Alternate Devic	e for Heave No		
· 8	03_1617.HSX 02_1622.HSX	Heading	Edgetech Yaw=0.00		
	03_1627.HSX	Tide	НҮРАСК		
		Sonar Head 1	Edgetech X=-1.370 Y=-1.915 Z=0.980		
		Sonar Head 2	Edgetech X=-1.370 Y=-1.915 Z=0.980		
			Edit	1 - 002 /550.HSX	
		Patch Test			
		Yaw=2.50 F	Pitch=-1.20 Roll=-0.70 GPS Latency=0.000		
		Yaw=2.50 F	Pitch=-1.20 Roll=-0.70		
			Edit		
		- Offecto From I	MDMAY Past Ela		
		Offsets From I	MIDMAX BOAT File		
		Always L	.oad Offsets From Boat File		
$\parallel -$					
			OK Cancel Apply		
_			2 - 002_1558.H	SX A	
			6 - 003 1	617 HSX	
					
)		Z Scale = 1.0	1100 View Angle

PATCH TEST Calibrations

• Day 2.

Read Parameters	Survey Matrix = Median	Color E Depth 14.0 18.0	вў — — р р
Survey Corrections Devices F Select All Files 001_1252_H5X 002_1257_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_302_H5X 001_325_H5X 001_324_H5X 001_324_H5X	select: Survey Files Before: Making Changes Navigation HYPACK X=0.000 Y=0.000 Z=0.430 Latency=0.000 MRU Edgetech X=0.000 Y=0.000 Z=0.430 Ptch=0.00 Roll=0.0C Atemate Device for Heave No Heading Edgetech Yaw=0.00 Tide HYPACK Sonar Head 1 Edgetech X=-1.370 Y=-1.920 Z=0.980 Sonar Head 2 Edgetech X=-1.370 Y=-1.920 Z=0.980 Eddt Eddt		
	Yew=2.501 Pitch=0.00 Roll=0.70 GPS Latency=0.000 Yaw=2.501 Pitch=0.00 Roll=0.70 Edit Offsets From MBMAX Boat File Load Save Current Offsets X Always Load Offsets From Boat File OK Cancel Apply	400 View 0,0	Angle

Mooring Lines

Cursor: Ping: 50557 Mark: 1 Date: Mar. 26, 2016 Time: 19:10:15 Power: 100% Free Space: 161784 MB

Playback Bathymetry: ON Record: OFF NET: OFF Power: OFF

📥 EdgeTech Disc	cover - Bathyme	tric							10.14																	. 0 <mark>- x</mark>
File View Con	nfiguration Co	ntrol Bathy	metry Help					F1		110	-															
071 N -	10 +		54 🛨 🔛	, "	• "			- 51 -	• 8 -																	
Meters	28 26	24	22 2	0 18	16	i 14	12	10	86	4	2 LF	SR	. 4	6	8	10 12	14	16	18	20	22	24	26 3	28 30	32	Meters
an fin																										
																and the second s										
																				E.						
																										e
															ŧ											
																								noverten versten bornen Roll of the second second Roll of the second s		
								(to:							and the second				st surve Marin	enerese Willia						
•)															•

SSE 53319 SSH 53296 Lat: 18: 38:1910 N Lon: 91:502022 W Course: 0.00 Speed: 0.00 A1D: 0.00 Heading: 316.4 Prich: 1.8 Holt: 4.4 Altitude: 1.9 Dept Cursor: Ping: 58484 Mark: 1 Date: Mar. 26, 2016 Time: 13:13:19 Power: 100% Free Space: 161784 MB

Playback Bathymetry: ON Record: OFF NET: OFF Power: OFF

Validation and Quality Control

System Coverage – Shallow

wat<u>e</u>r

- Typical Single Head MBES
 - Multi-Beam Echo Sounder (MBES)
 - Coverage around 3.5 to 4 x water depth
 - Line Spacing typically 3 x water depth
 - Limited to 130° Swath Coverage
- Typical PDBS
 - Phase Differencing Bathymetric Sonar
 - Coverage of up to 10 x water depth.
 - Gap at Nadir means full overlap required
 - Line Spacing typically 4 x water depth
 - Noisy Data
- EdgeTech's New MPES Technology
 - Multi-Phase Echo Sounder (MPES)
 - Coverage of up to 12 x water depth.
 - IHO Special Order compliant coverage over 9x water depth
 - Over 200° Swath Coverage

MPES vs. PDBS

Full Swath Coverage Vs. Nadir Gap

6205 Mounting Examples for Small and Large Vessels

What is a PATCH TEST?

- Patch tests are performed after initial installation, and periodically thereafter if the sensors are modified, to quantify any residual biases from the initial system alignment.
- Five individual tests:
 - Four that determine the physical misalignments of the transducer (port roll, starboard roll, pitch, and yaw).
 - One that determines the latency, or lack of synchronization, between the position and depth data acquisition.
- Examples provided in QPS Software

When and Why We Do it

- After the installation of a new EdgeTech 6205 Sonar Head.
- When Performance Test data is poor. Maybe the Sonar Head was moved?
- Damage or Deterioration to your Mounting.
- Required by Project Specifications.
- For Quality Control, not Quality Assurance Test... (similar to bar check of single-beam system)

Survey Hints and Warnings

Hints:

- Test in the deepest section of the survey area.
- Except for Latency, run lines at your normal survey speed.
- Run each test twice to confirm results.
- Average multiple tests for final values.

DGPS Warning:

- Make sure you have good GPS positioning. RTK GPS is recommended. Slight position error may lead to Patch Test errors.
- If HDOP is high, perhaps best to perform Patch Test at another time.

Assuming 3ft DGPS shift in 40ft of water

- Latency Test: +/- 0.4 seconds.
- Pitch Test: +/- 4.4 degrees.
- Yaw Test: +/- 4.3 degrees.

How to Perform a 6205 Patch Test

Roll:

d = 3 to 4 x water depth

- One Value for Port, One Value for Stbd
- Need Flat / Smooth Deep Bottom
- Requires overlap for Port and Stbd Separately
- 3 Opposing Lines Spaced at 3 to 4 x Water

Depth

- Same / Equal Speeds

How to Perform a 6205 Patch Test

- One Value for both Port and Stbd
- Need Flat / Smooth Deep Bottom to an Object

or Sloped Bank Feature

- Requires 2 Runs Over an Opposite / Reciprocal Line
- Same / Equal Speeds
- One Value for Time Latency
- Need Flat / Smooth Deep Bottom to an Object

or Sloped Bank Feature

- Requires 2 Runs Over the Same Line in the Same Direction
- Unequal Speeds
- One Value for both Port and Stbd
- Need Flat / Smooth Deep Bottom to an Object

or Sloped Bank Feature

- Requires 2 Parallel / Adjacent Lines Running in the Same Direction
- Same / Equal Speeds

Keep in Mind...

Also keep in mind that your Boat Operator will make or **BREAK** your Patch Test.

The more precise the Boat Operator can run the Patch Test lines, the better the results will be.

Therefore, the Boat Operator should run the Roll, Pitch, Latency and Yaw lines as close as possible to the **Drawn Line**.

Patch Test Procedures

The order that you collect your Patch Test data does **NOT** make any difference, but the order in which you process it, **DOES**...

Order of Processing:

- Find the Latency offset first.
- Apply Latency, then do both Roll tests (port/stbd).
- Apply Latency and Roll, then do the Pitch test.
- •Apply Latency, Pitch, and both Roll offsets, then finish with the Yaw test.

6205 Roll Test

Treat as a Dual Head Multibeam

- Different result for each transducer, port and stbd.
- Cut perpendicular to and in between the lines to analyze port-port / stbd-stbd overlap cross section.

Results

- After running the data thru all five (5) tests, then re-run them all again.
- This is done because you now have "rough" adjustments for all five (5) offsets, and the Patch Test can now produce "finer" results for each.
- After this second run-thru, **repeat for a third time**, but only use the smallest two (2) Step Increments and their respective # of Steps.
- This will produce your "Best Results".
- Keep a record of all past results, and use their Average.

Validation and Quality Control

- No data cleaning performed, 50 cm resolution (finest required by NOAA at this depth)
- 6205 meets IHO Special Order out to 10 x water depth, for uncertainty (≤ 50 cm at this depth)
- 6205 reports realtime uncertainty for sonar portion of Total Propagated Uncertainty (TPU)
- Sounding Density > 5 per cell (NOAA Spec)

AzimuthGeosurvey.hvf - File Edit View Jools Help □ 📷 🚰 🖄 🐇 🕼 🖄 (ψ) [1; * ♥ ♥ 🖉		
23 -35 -23 -35 -23 -35 -36 -37 -38 -38 -38 -38 -38 -38 -38 -	and SIPS Batch Processor	0 (m) 0 (m/s) 0 (m/s) Custom Vessel
ady a	June dia a	Kealcine
	Reading	Vessel
	Roll	Vessel
	Vertical	Vessel
	Tide	Static
	Sween parameters	Juduc
	Peak to peak heave	0 (m)
	Maximum Roll	0.0000000
	Maximum Pitch	0.0000000

System Performance – Results 1 *EdgeTech*

- EdgeTech 6205 test line differenced from a reference surface
 - Approximate Depth = 10 m
- Results
 - Error bars show 95% confidence level

- Results
 - Approximate Depth = 10 m
 - Red line shows IHO S44 SO : 95% confidence level < 0.26m out to 9 x water depth!

 Physics / Acoustics and Functioning of deployed Equipment

ACTIVE vs PASSIVE SONAR

Side Scan Sonar

- Sideways looking ; 2 sides
- Wide vertical beam
- Narrow horizontal beam
- Towed body

Side Scan Sonar : Time based

Side Scan Sonar is essentially a time based system

Wide Vertical Beam: Tow Height

- **EdgeTech** For Side Scan Sonar, the optimum tow height, h, is
- selected. For deeper towed systems this will mean the use of a winch and cable.
 - For armoured tow cable the ratio of cable out to tow depth is typically around 3:1.

Performance

- Range
 - Better coverage
 - Fewer lines
- Resolution
 - Is that one object, or two ?
 - Better Imagery
- Speed
 - Faster Surveys

How to deliver improved performance, in real world conditions, at an affordable price ?

Range

- Definition of maximum Range?
 - See an echo from a target (and how large?)
 - Delineate shadows behind the target, so as to aid identification.
- Either way, it's a matter of signal strength and noise.

What affects Range ?

- Signal Strength
 - Absorption (depends on frequency, water temperature and salinity).
 - Altitude (grazing angle reflected energy)
- Noise
 - Water Depth (surface noise /backscatter)
 - Ambient Noise
 - System Noise

Absorption

EdgeTech

- Frequency
- Temperature
- Salinity
 - Magnesium Sulphate
 - Boric Acid

- Michael A. Ainslie and James G. McColm, "A simplified formula for viscous and chemical absorption in sea water", Journal of the Acoustic Society of America, 103(3), 1671-1672 (1998).
- R. E. Francois and G. R. Garrison, "Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption", Acoust. Soc. Am. 72, 1879–1890 (1982).

Absorption : Effect on Range

CHIRP

- Compressed High Intensity Radar Pulse
- Linear FM chirp pulses
 - Provide high energy signals, with superior resolution
 - After match filtering the returns are shorter in time

http://en.wikipedia.org/wiki/Pulse_compression

Improving Signal Strength

- Wideband, Low amplitude, linear FM chirp pulses
 - Provide high energy signals
 - CW: Tx power typ. 1kW, Pulse length ~ 50us
 - Energy = 1e3 * 50e-6 = 0.05 Joules
 - Resolution = 3.75cm (depends on pulse length)
 - CHIRP: Tx 200W, pulse length ~3ms, BW = 40Khz
 - Energy = 200*3e-3 = 0.6 Joules
 - Resolution = 1.8cm (depends on bandwidth)

Reducing Noise

- Digital Towfish no cable noise
- Linear FM chirp pulses (again!)
 - Implementation of matched filter processing
 - As before, but with added white noise

http://en.wikipedia.org/wiki/Pulse_compression

EdgeTech Full Spectrum®

More Signal...

Less Noise....

Better Range

Real Ranges

Frequency	Range
100 (120) kHz	250 to 500m
300 (230) kHz	150 to 300m
400 (410) kHz	130 to >200m
600 (540) kHz	100 to 150m
900 (850) kHz	50 to 75m
1600 kHz	30 to 35m

- Shallow water (< 30m)
 - Range may be limited by noise from surface reflections, channel effects etc.

Range Performance

400 kHz Data

Data out to 150m

5:19.9666 E

43 : 20.4258 N

5:19.9841 E

43 : 20.4470 N 121.00

0.00 Meters

0.00 Meter

0.00 Meters 9.12 Meters

3.90 Meter

0.00 Meter

3.90 Meters

2.10 Meter

47.05 Mete

27.41

45.75 S

53.33 S

41843

arget Lon

arget Lat:

Ground Rang

Navigation Lor

Navigation Lat:

leadinα

Ping Numbe

Distance

Y Distance: Total Distance

.ength

width:

Area: Shadow Ra

Height

Save

Rottorn Confirm

Delete

Sharbou Lenn

Slant Range

Applications of Equipment Deployed *EdgeTech*

Example Customers

A far from complete listing:

- Military / Hydro
 - United Kingdom
 MOD
 - France (SHOM)
 - India DSR/NHO
 - Canada
 - Sweden
 - Egypt
 - Atlas
 - Thales
 - Kongsberg

- Research
 - NOAA (USA)
 - Scripps Institute of Oceanography (USA)
 - CEFAS (UK)
 - KORDI (Korea)
 - Maritime Institute (Poland)
 - Institute of Marine Survey and Planning (China)
 - Geological Survey of Ireland

- Commercial
 - C&C Technologies
 - EGS Asia
 - Fugro Survey
 - Gardline Surveys
 - GSE Rentals (UK)
 - NCS Subsea (USA)
 - Odyssey Marine
 - Sonar Equipment
 Services (UK)
 - Survey Equipment
 Services (USA)
 - Watergate
 (Nigeria)

Scour and Inspection

Pipeline Data Example

Pipeline Data Example

Salvage and Hazard Detection

Salvage

Sunken overturned barges

Vertical surfaces properly imaged

Target Detection

*Altitude = 20m

Site Clearence

Pre-Dredged Channel

Post-Dredged Channel

Bottom Classification and Habitat Analysis *EdgeTech*

Eel Grass Side Scan & Co-Registered Bathymetry

Water Depth less than 1 meter at Chart Datum

Bottom Classification and Habitat Analysis *EdgeTech*

Data: New River, FL - Swath

550 kHz Data

 \odot

- Channel width circa 40m
- Depths in the centre of the channel from: 3 m to 12 m
- 0.5m bins

Run as a single line !

Data: New River, FL Overview

Run as a single line !

Acknowledgements

- Geosurvey Mexicana
- SEMAR
- NAVY

Thank you and please come see us at the booth